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FOREWORD

~~ This is the final report for a three year research effort entitled

• “Development and Implementation of Efficient Sparse Matrix Algorithms ’ .
The scope of th is effort has been very broad , covering the development of

efficient sparse matrix factorization and processing al gorithms an d the

~~ develo pment of local aid g lo ba~ optim ization algorithms. The topics form a
logical sequence in the sense that the results of each study are supportive
of the successor studies in a natura l way for the treatment of large sparse

systems . Yet , they are autonomous efforts, eac h having a broad spectrum of

applicability in its own right.

The study on sparse matrix factorization and processing is reported in

“Sparse Symmetric Matrix Processing by P. S. Jensen and J. K. Reid ,
• Lock heed Researc h Laboratory Report LMSC-D626184 dated 26 May 1978. This

report is written as a volume of th~~~ related pa pers entit led:

~A Compar ison of Two Sparse Matrix Processing Techniques ,”

by P. S. Jensen ,

~~~ Pac kage of Subroutines for Solution of Very Large Sets

of Linear Finite-Element Equations ” , by J. K. Reid and

“A Fort~-an Virtual Storage Simulator for Non-Vi rtual Computers ” ,

by P. S. Jensen .

T he second pa per , also availa ble as Atomic Energy Authority report AERE-M 2947,

documents the computer program developed as a result of this study . The
utilization of auxi lliary storage by this program is based on a virtual

memory concept that is documented in the third paper . These computer

programs have been distributed in the United States and England and requests

from Canada are being processed .
A preliminary report of the work on local and global optimization is pro-

vided in “Numerical Techniques for Optimization and Nonlinear Equations ” by
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P. S. Jensen , E. R. Hansen and H. M. C. Yee , Lockheed Research Report
LMSC—D630055 dated 29 June 1978. It included a preliminar y version of

‘.1T
~i~bal Optimization Using Interva l Ana lysis — The Multi—Dimensional Case ”
by E. R. Hansen , which was subsequently accepted for publication in Numerische
Mathematik. That paper established the basis of the computer program
documented in “GLOBALMIN — A Computer Program for Global Opti m ization by
E. R. Hansen , Lockheed Research Report LMSC-D6833D7.~ dated 15 November 1979.
This program hEs just been complete~~~ of this writing and has not been

distributed .
The remaining work on local optim ization is reported here. The mai n

text covers the technical development and test results . The computer program
CRATER , developed for the study , is documented in the appendix. CRATER is a

very flexible program implementing both descent and quasi-Newton algorithms
for unconstrained , local optimization. The present implementation is
oriented toward small problems having full Hessians. An effort to link
CRATER to a sparse ma :-ix processing system and a non -linear structural
analysis computer program (STAGS) for large scale engineering analysis is
planned for the near future . 
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ABSTRACT

A new descent algorithm based on direction searches in the osculating
plane as opposed to the negati ve gradient is described . The major practical

p dif ference between the implementation of this approach and quasi-Newton

al gorithms is the use of the Hess ian in place of the inverse Hessian. Thus.,

the descent algorith m is most suitable for problems for wh ich it is p ’act ical

to recalculate the Hessian a number of times during the solution process. A
number of comparative results with popular quasi -Newton algorithms are
provided . Extensive discussion of the imp l ementation details is included

alon g with documentation of a convenient computer program CRATER for

unconstrained optimization analysis.

(2
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1. INTRO3UCT ION

Let f:R n P be continuousl y differentiable and let g(x) and H ( x )  denote

the gradient and Hessian of f at ~~~. We are interested in determining a

vector ~ that minimizes f locally , i.e., suc h that g(x*) = 0. For th i s
discussion , we consider onl y unconstra i ned mi nimization.

The methods considered here are all linearization methods ~13]

cha racterized by the use of an affine approximation

g ( x )  A~ (x - 
~~ 

+ 
~~~~ 

(1)

of g, which is to be valid for x in a neighborhood of 
~~ 

The
practical application of this approximation is to use its zero

~k+1 
= 

~k 
- A~

1 

~~~~

as an im proved approximation to a zero of g.

We call the chan ge

~k ~k+l ~k
or 

= -A~~ ~~~~ 
(2)

the kth step vector.
The most famous l inearization method is Newton ’ s method which uses

A k 
= H(x k). For many problems , H is very difficult or expensive to

~construct . This fact has given rise to the widely studied qyasi-Newton

methods , surveyed in ~3 and 5) for example.
Another approach in determining Ak is motivated by considering x:R -÷

a con tin uous , differentiable function of a pseudo -time variable t defined by

x ( t ) = -g(x), (3)

—1—
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where ~ denotes the derivat ive with respect to t . If x(O)  is in a region
• of attraction of x~ , then clearl y x (t) + x~ as t — ~~ . For a small time

increment h, we may use a Tay lor ex pans ion

2
x ( t + h) = x ( t )  + h ~ (t) +

~~~~~~~
‘
~~~

‘ + O(r - ~ )

p or , from (3) ,
2

x(t + h) = x ( t )  - hQ H~

to app roximate x by neglectin m the hi gh order tei-— s in n . 2e~inin c

s = x(t + h) - x(t) similar to (2), we obtain

S + EH9 ,

where ~ = -h and = h2/2. We shall refer to methods of this nature as

descent methods. In descent methods

A~
1 

= ~I + 
~

H(
~ k ) .

Steepest descents is the most well known descent method , for which = 0 .

An important practical differenc e between quasi-Newton and descent is

that quasi—Newton uses H ’ and descent uses H to approximate s. If the

problem being treated is such that H is difficult to calculate , the

noted difference is of minor consequence. The appropriate algorithms for

either model usually construct approximat ions to H 1 or H using low rank
(1 or 2) update s and the two approximations. are about equally difficult to

constr uct. If , however , it is reasonable to calculate H occasionally
dur ing the solution process , (~~ presents a clear advantage since it does

not require a factorization of H. This advantage is particularly noticeable
if H is large and sparse. In fact , we note in (4) that an explicit

0representation of H is not required , i.e., only the product Hg is needed
for various g. Thus , we can convenien tly introduce low rank updates to the

current H with minimal impact on an algorithm based on (4) by apply ing t ie
updates directly to g rather than to H prior to forming H9 (i.e., re~~~’-
the updated H in product form).

-2-
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There have been studies , e.g. ,  [11] and [16], applying quasi-Newton

algorithms to fairly large , sparse systems . in [16] , the updates for the
inverse Hessian were initially formed in the conventional manner and then
zeros were inserted to conform to the sparsity pattern of the problem . It

has apparentl y been shown to be superlinearly convergent [5 p 60~ . Ir: H~~~,

the updates are not directly applied to the approximate inverse Hessian but

are hel d and applied in product form . After every ten or so iterations , the

Hessian is reformed and refactored.

In th i s paper , we consi der the app l i ca t i on of a descen t al gor ithm to
sparse problems under the assum ption that it is reasonable to refor the

Hess ian periodically. As indicated in the above discussion , we shoul d no t
expect as rapid convergence as with quasi-Newton methods but , should expect

the average cost per iteration to be substantiall y less .

In the next section , we discuss the descent a lgo ’ thm used . It is a
planar descent method in the sense that a direction in the [g, Hg] plane

(see (4)) is chosen in place of the traditional steepest descent direction.

In Sec tion 3 we discuss the matrix updating schemes used . This topic has

been extensivel y discussed in the l i terature and here we sim pl y use the

two approaches that have enjoyed the greatest success in the past.

Once the direction is determined , we use a l ine search to establish

the step length as discussed in Section 4. Thus , the function is not

truly minimized in the plane [g, H9], but only along a direction in that

plane determ ined on the basis of (4) .  A study of complete planar minimization

at each step remains to be conducted .
In Section 5 we present some test results. Several “c lass ica l ” problems

that have appeared in the literature are presented along with some new ones.

Our overriding objective for this effort was to implement an effective

algorithm for large , sparse problems for whic h it is reasonable to construct
the Hessian occasionally during a solution process. Althoug h the researc h

was directed toward descent methods , we considered it imperative that no
coninitment to descent methods should be reflected in the implementation.
Furthermore , because of many variations in updating , step direction and line
searc i that must be considered in such a study , we considered it important
to use a very f lexible (modular) design in the irm~l ementati or and include a

3.. 
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convenient problem oriented language in order to faci l i tate a systemati c
study . The resulti ng computer program , called CRATER , is discussed in some

detail in Appendix . We feel that CRATER meets its design objectives very

well and should prove very useful for production development as well as
additional studies in local optimization.

—4—
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2. PLANAR SEARCH

Instead of defining coefficients ~ an d as i n ( 4 ) ,  we consider
predicting ~ and to minimize f (x + s(~ ,E)). Using a Taylo expansion
abou t x we have

- 

f(> ~ s~ 
f(,) + 5T~~~\ +

whic h may be combined with (4) to yield

f ( x  + s) f + + + + 2
~~
:2 + ~

2O 3 ) ( 5 )

w here we def i ne 

T ,
E g H  g, i = 0 , I, 2 , 3.

The extrema occur at the zeros of the partial derivations of (5) ~‘rt and

:, which are formally given by

— 
‘1 2  

- 000 3 fl)
— 2

~1~ 3 - 02
and 2

— 

0002 -
201 3  - 02

~ ~l~3 ~ 
0~~~~. Otherwise , we choose c~’ = 

~
0 O/ c l and ~~‘ = 0.

Because the approximat ion (5) is val id  only for small s , we have  no

guarantee that the step

= ~ ‘
g 

+ 6 ‘Hg (7 )

minimizes f (x  + s) over ~ and ~~, or even that f(x + s ’ ) f(x). The following
theorem at least shows that ~~

‘ is in a descent direction.

-5-
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Theorem If f:R~ -
~ R is twice continuously differentiable with non-negative

definite Hessian H , and at point ~ ~ R
’
~ the gradient g(x) ~ Q, then the

step ~~
‘ defined by (7) is in a descent direction.

Proof
We must show that 5 1 T

9 < 0. If ~ ~ 
= 

2 then s ’ is parallel to the

negative gradient , which sat is f ies our theorem . Otherwise :103 02 > 0 by

the Cauc hy-Schwarz theorem and so from (7) we ev idently need to show

2
(:~ c~~- :2 ) (~~ + O l ) < 0.

Now from (6) and the definition of ;., we have

2 3
3 — -( :~ 3 

- 2:0:1:2 
+ 

~1 ~

Defin ing

V = :~Hg -

we observe tha t

= VTHV < 0. (8)

We have strict inequality in (8) because v is not jr the null space of H.

If it were , then the denominators in the expressions for Y and ~~
‘ in (6)

would be zero (as would the numerators). That fol lows immed i a tel y from the

facts that Nv = 0 implies

20002 
= 01

and

°
~~ 

0
3 

= 0102.

-QED-

If we simply implement the planar search al gorithm as outlined , and test

it on the standard Rosenbrock function

I
—6-
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= 100(x 2 - x1
2)2 + (1 - x 1)

2

starting at ~
T 

= (—1.2 , 1), we find the pleasing result tha t convei gence is

achieved in only 5 step s. This compa res with 30 steps for Powe ’l ’ s netbo:

and 18 steps for the Fletcher -Powell method [62 . Note , however , that tnis

comparison is not completely fair since here we use the trje Hes siar. A ’ so ,

unfortunately , the convergence here progresses in the rather erratic fa shion
shown in Figure 1. It would be somewha t more appealing if the function

decrease d monoton i call y, or nearl y so.
We can arbitraril y limit the factor by which the funct ion value at any

poin t exceeds the value at a previous point. For example , makina the factor

less than (or equal to) unity forces monotonic converg ence. In such a case ,
a mult ip le -y 5 ’ of the step given in (7) must be used , where 0 1. Note

that a su itable y always exists since s ’ is a descent direction as snown in

the theorem . The value of ~ must be determine d by a search ~Hong s ’ . This
matter is discussed in Section 4. We shall see later that im posing monoto nic

conve rgence on our planar search alGorith m leads to a mildl y slower conver-
gence rate for the Rosenbrock problem .

If we apply the basic method to a quadratic form

f o )  = x T b - 
1 XTHX

we observe instant convergence for n = 2 (as expected) and monotonic con-

vergence for larger n. For example , if b
~ 

= n + 1 - i and 
~~ 

= i + i , we
obtain convergence in 5 steps for n = 3 and convergence in 15 steps for n = 10.

The Ne~’ton method , of course always gives instant convergence for this problem
anc quas i- ewton methods theoretically reouire no more than n steps.

-7-
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Start

(.76, -3 .2)

STEP FUNCTIONAL

START 24 .20
1 4 .73
2 1403.74
3 .06
4 .33
5 .00

Figure 1. Convergence of the Basic Plana r Search Al gor ithm for the Standard
Rosenbrock Function Using the Analytic Hessian.
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3. MATRIX UPDATING

Techniques for updating the appro ximate Hessian or inverse Hessian have

been very widely studied for over 25 years . Dennis and Mor~ ~5] 
provide a

.~~~ recent survey of much of the work in thi s area and Broyden :3] provides a
very readable earlier survey of genera l techniques for opt irr izatior. and non-
linear equation systems . The work by Broyden was present ed at tre S~-CSN~

4 Re gi onal Conference on “The Num erical Solution of Nonlinear Algebraic Systems

held at the University of Pittsburgh in 1972. A highli ght of that meeting

was a series of lectures by Rheinbold t [13] that also provides excellent sur-
vey information as well as considerab le theoretical background .

For this study , we used two popular update procedures , viz: DFP (Davidon-
Fletc her-Powell ) and BFGS (Bruyden-F letcher -Goldfarb-Shanno ). in order to
present these formulas and the form in which they were implemented , we intro-
duce some notation that appears to be widely accepted among articles on this

topic.
As discussed in Section 1 , we are seeking a point x *~R~ that minimizes

f:R~ -, R locally. We use an iterative procedure which , given a current point

~~~ produces a 
~~~~~~~ p ~~p

n such that x + S is closer to ~~* than x in some

sense . We introduce the vector

~~= g (x + s) - g(x)

which represents the change in the gradient 
g 
of f resulting from step s.

Obviously, we would like g (x + s)~ I g(x)~ or f(x + s) < f ( x )  or both.
Probably out of respect for the extensive works of Broyden in this area ,

the letter B is usually used to represent the approxima te Hessian and H is
used for something else (the inverse of B). In this paper , we shall also use
B for the approximate Hessian , but H will denote the true Hessian (as in Sec . 1).

If B is the approximate Hessian at point x , we construct s, e.g., by
means of the planar search algorithm discussed in Section 2, and form the
updated Hessian using either of the two formulas

-9-
4.
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BBFGS 
= B + (~,s) ~T - ~ ~

T (9)

or

BDFP = B + ~T + ~T (10)

where

(y,s) deno tes the inner product

= ;1 :

’

~~~ ~~~

‘

• an d
= -

with
v ,s)

- 

~~~~ ( s )

It is a simple algebraic exercise to show that (9) and (10) are formally

equivalent to the forms given on pp 72, 74 of Denn is and More is : .
The important features for our application are : 1. The updates preserve

symme try (which is obvious) and 2. BBFGS s BDFP s = ,y. The la tter feature

is basic to all usefu l upda te formulas.
For comparison , we also implemented quasi-Newton algorithms using the

BFGS and DFP counterpart formulas for the inverse of B. Letting B 1 be the

approxima te inverse Hessian at x we have from [6].

~~~ = B 1 
+ (y,s) 55

T 
- 

(,~‘,w) ~ 
~T (11)

where
w B ~~y.

From [ 6] , we have

B
~~GS = ~~~ + (y,w) rrT ( 12)

where
r S —  W .
- (.y ,

~T - (y,w) -

-10-
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4. LINE SEARCH

Two fundamenta l problems. that must be addressed in iterative optimization
• algorithms are selecting a step direction , as discussed in Section 2 , and  a

step length. Intuitively, a length that mini mizes the function in the

direction of the step seems most appropriate . This choice of length is

calle d “perfect iteration ” 
~~~~~

] .  However , tha t len gth i s fairl y costly to
• determine and , as we saw in the examp le of Section 2, i s no t alwa ys the best

choice.
A popular al gorithm due to Davidon [~

] uses a cubic interpolation of the

func tion and its partial derivative in the step direction corresponding to

lengths of 0 and 1. If we use length h instead of 1 and let f0, f~ f1,
denote the values of the function and its derivatives (along s) at ~oirts

O and h on the step vector s , then cubic interpo lation suggests that the

length ~ that minimizes f along S i s  g i ven  by

0 = - 3f0 fl
2 

- r~~/3.~ (13)

where 2
= (3(f 1 

— f0) 
- h (f1 + 2f 0))/h

and , , 3
= -(2(f1 

- f0) 
- h(f1 + f0 ))/h

If f (x + 9. s)  is less than f (x)  and f (x + hs), then 9. is the accepted leng th

without further searching . Otherwise the process is repeated with smaller h ,

e.g., or ~~. Since the algorithms usually used to generate the step S

take its length into account , an initial h = 1 is suitable. However ,

- 
Fletcher and Powell [6] suggest using conservative extrapolation

h = min( 1 ,2(f_f*)/f’)

if the value f* = f(x*) is known a-priori.

— 11—
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If f (x )  is such that it is practical computation a lly to use g ’ 2 ir
the place of f in the above algorithm , some benefit accrues from the fact
that the converge d value is zero, viz: there is less cancellation in the
calculation of and 2’ and the f * is always known a-priori .

A quadratic line search is also frequently used . Since four values
f0, f0 ’ , f 1 and f 1’ are avai lab le for the interpolation , one can be discarded

or a least squares fit can be used~. We have chosen a quadratic interpolation
of f ’  values that continues until a zero (with in a prescribed tolerance) is

found ; Note that this is cubic in f. The processes are started with f~, f~ 1r and f ., where f comes from the Davidon cubic interpolation. The amount o~
work done in the line search is controlled by the tolerance.

4
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5. NUMERICAL RESULTS

There have been a variety of comparative resul ts publi she d (see [
~~~~ . 2,

7, 15] for examples) on the unconstrained optimization proble m . Several
problems appear repeatedly in such studies and seem to have become defacto

g 
standard test functions. Occasionall y the author of such a study makes a
definite conclusion such as HThe Fletcher algorithm was clearly suoerior t~
all the others , followe d by the Davidon-Fletcher-Po well . . .“ in ~7 ] .
This author appreciates the value of the test results presented but cautions

• against drawing a sweeping conclusion from them . The problems involved
relativel y few unknowns (15, IC and the rest less than 6) but certainly

represented a substantial complexity . Questions relating to sparsity and

the use of analytic Hessians (always or occasionall y) were not considered .

Unfortunately , the test results presented here are also inadeaua te to

~~~ any sweepin g conclusions. They are only intended to provide a

m inim a l indication of the functioning of the algorithms discussed . A more

compre hensive study on the behavior of these algorith m s for the optimi zation

of struc tural panels will be forthcoming. The problems treated here are

described below .

5 .1 PROBLEMS

Problem 1. Rosenbrock [14)
A two dimensiona l problem that presents a considerable challenge for

numeri cal optimization is given

r (x) = 
~~ x 1 - x 2 + (1 - x 1

with ~ = 100 and starting at

= (—1.2 , 1).

—13—
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In appearance , this funct ion is like a deep canyon with a curvec . aer tl ,
sloping bottom as illustrated in Figures 1 and 2 ( u s i n g  a c~ 

= 10). Rosen~rcc ks
function converges to zero at ~*

T 
= (1 1)

a .- - ~~~~ ~) ‘ I 
•

I 

~

F ~
~~~~~~~~ , 

‘ ‘
‘ 

, 

‘

/

Fi gure 2. Rosenbrock Function

Problem 2. Wood [15]
A generalizati on of the Rosenbrock problem to four dimen sions is given by

f(x) = r 100 (x 1, x 2 ) + r90(x3, x4) + 19.8 (x2 
- 1)(x4 

- 1)

+ 10.1 ((x 2 - 1) 2 + (x4 
- 1) 2 )

-14-
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where r (x) is the Rosenbrock function and the starting point is

= -(3, 1 , 3, 1).

Wood s function converges to zero at ~*
T 

= (1 1 1 , 1).

Problem 3. Powell [24]

A problem that has a singular Hessian at the point x~ of convergence and
has an extreme ly gentle slope in one direction near x~ is given by

f ( x )  = (x1 + lOx 2 ) 2 
+ 5 (x 3 - x 4 ) 2 

+ (x2 
- 2x3)

4 
+ 1O(x 1 

- x4)
4

starting at

= (3, -1 , 0, 1). 1
I t converges to zero at the origin. Within a distance ~ of the origin , ~e

slo pe is O(~~ ) along x 1 
= -lOx 2, x3 

= x4.

Problem 4. Ray leigh Quotient
A problem that does. not appear to have been used much in the past for

studies of this sort is a Ray leigh quotient , such as tha t given by

x ~~~ nX Nx

where

Tn(x) = 2/x x

and

N = diag (1 , 2, . . . , n).

The solution f ( x *) = 1 occurs at = (1 , 0, . . ., 0). The gradient and

Hessian of this function are given by

~~

- 15—
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and
- T TH (x) n (N - gx - x g )

where N is the shifted coeff icient matrix given by

N a N - f].

For application of the plan ar search minimization algorithm to thi s
problem , we are concerned with the nature of step vectors of the form (4 ) .

Note tha t

T T Tx g = ’ - (x Nx - fx x)
p 

=2f - 2f

= 0

so that

— T
Hg = r. (Ng - 

9 
gx) .

Since these results imply that
T— 3 T—3g H g = ng Ng = m x N x

we see that the vectors 
g and Hg are linearly independent unless x is an

eigenvector , in w hi ch case g = 0.
Com bining (4) with the above , we obtain the expression

S = n(~~nN 
2 

+ - ~9
T
91)

= (y 2N + 11N + y 01)x ,

where  = n (6(nf
2 

- g
Tg) - ~f) = ~f ( 3~f - 

~
) - ~~

2 T N2

= r (~ — 26nf)

2.y
2 n~~.

For arbitrary i and j (i 
~ 

j) we may write x + x jej + ~~~~ where ic

the ith column of the identity matrix. Note that this implies 
~i 

= = 0.
• Note also that the ith and jth components of N~ are also zero . Letting 

- -
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we have 2
s Nx +~~~~~~ i ) x . e . + (~~~~~jk )x.e .

Thus , we can elimina te components i ano j from the next iterate vector

x ’ = x + s

by choosing ~ and such t hat
2

~~ ~k
1 =

0 0

Conse quently, there exi s ts a se qu ence of ~‘s and 6 ’ s such that the problem

can• be solved in no more than n , ’2 steps. Unfortunately, the current planar
searcn al gorith m does not produce tnis sequence and somewhat more than n/2

steps are taken.

The three dimensional Ray lei :r quotient may be graphically illu ctrate d

by paramete rizing it in terms of coordinates in a plane passing through the

tnree unit eigenvectors of N. The result in Figure 3, s hows the th ree
stationery points at (0,0), (0,1) an d (1 ,0).

-17—
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Fi gure 3. Illustration of a Ray le ig h Quot i ent .

Problem 5. Quadratic form
A very simple quadratic form test problem was also include d in ~ ‘n ~ect

series . The form of this was

f () = xT(b + ~ Hx)

where
b~~= n + l - i

and H is diagonal wi th

H.. = 2i , i = 1 , . . . , n.

The solutio n f(x*) - ~~ (n + - occurs a t x*T = (n /2 , (n-l) /c ,

(n-2 ) /6 , . . ., l /2n). 1

-18-
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5.2 TEST RESULTS

Each of the 5 problems described wa s solved using each of the 3 methods
(p lanar search , DFP and BFGS), uti l iz i ng eac h of the 3 line search techniques
(cubic , extrapolated cubic and quadrat ic).  For the planar search studies
each of the 3 Hess i an update s (DFP , BFGS and anal ytic) were used , m akinc a
total of 75 tests. The results of these tests are summarized in Tables 1

a
and 2.

Not all of the solutions converged within the maximum number of stems

! 
allowed. These cases are noted by an * in Tables 1 and 2. The values of

the functions and their gradient norms at the end of the iteration are

given in Tables 3 and 4. Zero entries in these ta b les corres pond to con-
verged results.

- .
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Ta b le 1
t

S T A T I S T I C S  FOR cOMPLET E P L AN A R  SEARCH SOLU T IONS

I I HESSIA N I I I FUNcTION ! GRADIENT ! HESs IA’~ i
I PR OB LE M I UPDATE I SEA P H I STEPS I E V A L S .  I EvALS. I —VECTOR
I I I I I I MULTS. I
I QUAD . I O FP I CuBIC I 26 I 46 46 78 I
I I I Ex—C u I 26 I 46 I 46 1 78 I
I I I Q U A D 1 23 I 24 1 24 I €~ I
I I I I I I I
I I B FG S I CUBIC I 20 I 74 I 74 I 60 1
I I I Ex — C u I 20 I 74 I 74 I 60 I
I I I QUAD I 23 I 24 I 24 I 69 I

a I I I I I I I
I I A N A L Y T I C I  CuBIC 1 18 I 67 I 67 1 35 I
I I I Ex— CU I 18 I 67 I 67 I 36
I I I QUAD I 24 I 25 I 25 1 46 I
I I I I I I I 

R A Y L  I D F P I CuB ~~ i 23 I 35 I 34 I 69
~~ I I I EX—CU I 153 I 164 163 459 1

1 I I QUAD I 12 1 13 I 68 1 36 1
• I I I I I I I I

I I B FGS I cuB :: I 35 1 46 I 45 I 105
I E x — C U  1 153 I 164 I 163 I 459 I

I I I QUA :  I 1 1 I 12 1 63 1 33 I
I I I I I 
I I A N A L Y T I C I  CJE IC I 17 I 24 1 24 I 34 I
I I I EX — CU 1 17  I 20 I 2C I 34 I
I I I QUAD I 42 I 43 I 167 I 84 I
I I I : I I I I

RO SN . I DFP I CJBI: I 42 1 51 I 51 I 12 6 I
I I I EX—CU I 42 I 53 I 53 I 12 6 I
I I I QUAD I 28 1 29 I 129 I 54 I

I I B FGS I CUB IC j 36 I 44 I 44 I 108 1
I I I E~ —CU I 39 1 51 I 51  I 1 1 7  I
I I I QUAD 1 33 1 34 138 j eo I
I I I 1 I 
I I A N A L Y T I C I  C~.jB I0 1 21 I 32 I 32 I 42 I
I I I Ex—c U I 21 I 32 1 32 I 42 1
1 I I QUAD I 14 I 15 I 87 1 28 1
I I I I I I I I
I WOOD 1. DFP I C u BI C 1 303 I 304 I 304 I 9I~9 I
I 1 I Ex—CU I 303 I 3C4 I 304 1 909 I
I I’ I QUAD 1 303 I 304 I 796 I 909 I
I I I I I I I I
1 1* BFG S I CUBIC I 303 I 309 I 308 I 909 I
I I’ I EX—CU I 303 1 308 1 308 I 909 1
I I QU AD I 303 I 304 I 681 I 909 I
1 1 I I I I I I
I I~~AN AL Y T I c 1  cUBIC I 303 I 307 I 306 I €0 6 I
I I. I E X —C ~ I 303 1 307 I 306 I 605 I

I I QUAD 243 1 244 1 502 1 466 1
I I I I I I— — — — — — — — — 1  
I POWELL I’ DFP I CUBIC I 303 I 304 I 304 I 909 I
I 1* I Ex— cu 1 303 I 304 I 304 1 909 1
I 1* 1 QUAD I 303 1 304 1 426 I 909 I

— 1 I I I I I I 
I I~~AN AL v T I c I  CUBIC I 303 I 304 1 304 I 606 I
I I’ I EX —cU I 303 I 304 I 304 I 606 1

I. I QUAD I 303 1 304 I 379 I 606 I
I I I I I I I I
1 1. BFGS I CUBIC I 303 I 304 I 304 I 909 1
I I. I Ex—cU I 303 I 304 I 304 1 909 I
I I’ I QUAD I 303 I 304 I 383 I 909 1
I I I I I I I

L _ _  

_ _ _ _ _  
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Table 2

S~ A 1 I S T IC5 FOR CDM~~~E~~E QJ~~S I — N E ~~~D’~ S O L L ~T 1 D ~~S 

I DF~ I 9~~GS 
I I I ~uNC~~. G~~A 0 .  I H E S S : a \ :  I ~~~~~~~ _ ;

~~ :. i~sss:~ .:
~~Oe~~5 .~: so:.~~:-~: STE PS I E~~A 9  : E~~~~s . i — ~~~: : c~ s E ~~s I . E~~A L 5 . : E V ~~~5 .  x — .E : :~~: I :v.. _ s.~ ~~~~~~~~~

Q UA D : c J a : :  1 1 1  I 22 1 22 1 22 1 1 1  I 22 1 22 I 22

a ! E~~— ... 1 17 I 19 1 19 I 34 I 16 I 23 I 2 3 1 32 1
I C.~~0 . I 10 I 1 1 1 21 1 2C I 1 1  I 12 I 22 I 22 I 
I I I I I I I I I 

‘f 

R A Y ~..  : c~sIc 1 21 I 23 1 23 I 42 1 20 22 1 22 1
:~~E’ —c i .  I 153  I 1 54  2 154 I 315 1 1 5 3  1 ~~~ I 156 1 3 6

I 153 1 1 1~~~ I 316 1 79 80 I .
~~~ : :

• ~ 3 S . . I C~~~:: 1 54 1 6 9  1 69 I ~CB 1 39 I 5~ I 57 1 ~E I
I E ’ — C ~ I 46 1 57 1 57 I 92 I 4 1  1 55 1 55 1 82 I
I D~~~C .  I 28 I 29 I 1 35  I 56 I 35 I 36 1 ~6D I 7C I 
I I I I I I I I

w OO D I~~C~~~I: I 303 1 322 : 322 I 616 I 31 I 51  1 51 62
I~~E~~— C 1 303 I 35~ I 35 0  I 606  1 76 1 92 1 92 I 14 5
I 0 _ A C .  1 88 I 89 : 355 1 176 1 3 1 76 I 3 2 0  1 14 5

P C ñ E L L I  C — B : 0  1 94 I 1 1 0  1 1 1 0  I IEB  1 38 1 5~ 1 s ’  76€
I E X — C  I 106 1 1 1 5  : i~~5 1 2 12  1 3~ I 33 1 33 I 622

1 74 I 75 1 135 I ~UB I 27 I 28 I 81 1 544 
I I I 1 I I 

Table 3

I ; A . E  S E A R C ,~ I
I I
I D~ I BF GS 

P DwE ~~L 303 ~ .. N C T I O \  I G A E Y ~ I ~u\0 ~~ICN I 3Rr ~~I E N T  I ~U~~: : N
C U B I C  I 8 . 2 0  E — 0 8  I 4 . 0 1  E — 0 5  1 3 . 0 2  5 -0 6  1 4 . 40 E — 0 4  I 1 . 5 3  5 - 0 5
E X C U B I C  I 8 . 2 0  8—08  I 4 . 0 1  E — 0 5  1 3 . 0 2  E— 0 6 1 4 . 4 0  E — 0 4  I 1 . 5 3  5 - 0 5  I
Q U A D .  1 3 . 2 0  E— 0 6  I 3 . 4 6  E — 0 4  I 6 .5 8  E — 0 7  I 1 .5 9  E— 0 4  I 6 . 1 4  5 — 0 6  I 

I I I I
~DOD 303  I Fur ~c T  ION I 3~~A : I E\ T  I FL~~C ON 1 G~~A D I E \  1 F U N:— I : \  I

CUBIC 1 7 . 8 7  E 00 1 2 . 8 5  E — 0 1  I 1 . 3 1  E — 0 2  1 3 . 8 7  E — 0 1  I 7 . 8 1  5 00 I
EX c U B I C  I 7 . 8 7  E 00 I 2 . 8 5  E — 0 1  I 3 . 5 9  E 00 1 3 . 8 2  E 00 I 7 . 8 3  E 00 1
QUAD I 6 . 6 0  E — 0 2  I 1 . 0 9  8 00 I 6 . 7 8  E— 0 9  I 1 . 0 3  E— 0 3  I 0 I 

I I I I I

Table 4
I Q 1 . A S I— N E w T O N  I
I DF~ I BF GS I

wOOD — 303 1 FUNCTION 1 G RADIENT I Fur ~c - Io N OPAD I E N T  I 
I I I I

CU BIC I 4.08 E— 03 1 2 .21 8 00 I 0 I 0 I
Exc...BIC I 2.75 8—1 1  1 1 . 1 5  8—0 4 1 0 1 0 I
QUAD I 0 1 0 1 0 I 0 I 

I I I I I

-21-
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6. CONCLUSIONS

We have presented a new descent method that selects its search directions

• from the osculating planes instead of the traditional gradients. We have
described and tested a variety of implementation considerations and made

extensive comparisons w i t h  two popular quasi-Newton algorithms. T he major
difference in implementation between the descent and the Newton, or quas-

4 Newton) algorithms is the use of a representation of a Hessian in the  former

and its inverse in the latter. When the nature of a problem is such t h a t  i t

is practical to work with the inverse Hessian , there appears to be little

doubt that a good Newton or quasi -Newton algorithm will outperform a descent

• algorithm . When this is not the case; however , this new descent al gorithm
provides a viable alternative .

For both types of algorithm , we f i nd tha t the expenditure of a moderate

amount of effort in the li ne search , such as through t he use of our quadratic

search algorithm , has a very favorable effect on both convergence rate and

robustness. We recommend somewhat more effort in this respect than the

simple one or two step cubic interpolation that is frequently suggested .
Two studies relating to this work should be made in t he fu ture . The

first should investigate the possibility of doing a plane search for the
step length and direction simultaneousl y as opposed to obtaining the direction

from the plane and doing a line search for the length . The second should
test the behavior of the descent algorithm on large , sparse problems and corn-
pare it with that of a good quasi-Newton algorithm .

-22-
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1. INTRODUCTION

CRATER is an interactive computer program des igned for the convenient

solution of optimization problems using various algorithms . Convenience of

~ operation is achieved by means of a problem oriented language that provides

prompting whenever a user needs it but does not burden the experienced user
witr unnecessary questions. Pro~ision is also made for inspecting inter-

med iate results and changing various contro l pa rameters such as the print
• con trol during an execution. The user can even stop a run and re-initialize

it at a different starting point if so desired. If a user shoul d become
confused at some point in an execution , he can type HELP for assistance or

STOP to quit. One or several commands may be given on one line . Finally,

CRATER is forgiving . A user needs only to get the first four letters of each

command spelled correctly. If he fai ls at that , CRATER wi l l  politely ask
him to repeat.

Convenience of problem setup is achieved through program modularity .
Eac h routine used by CRATER is designed to serve a specific and rather

isolated prupose , and is well documented internally. Three specific routines
with which a user is particularly concerned are : USRFNL , USRGRD and USPHES ,
which define the functional , gradient and (optionally) Hessian on which the
optimization procedure is to be applied. The starting point can be set at
zero or at a variety of random points using interna l options or it can be keyed
or read in (free field).

For transportability , the code is essentially written in standard F O R T R A N

66. We say “essentially ” because , in fact, it is written in a special master
source code (MSC) form that includes directives for special , machine dependent ,

characteristics along with the FORTRA N code and resides in a lib rary (called
EASY) developed at Lockheed Missiles and Space Co. [81 . EASY is maintained
by a reasonably sophisticated librarian program that , among other things , is
capable of interpreting the special MSC directives and producing source code
that is immed iately operational on one of several specific computing environ-~erts. I

A-2
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Another feature of MSC is that i t  includes a structured program

documentation system that imposes a significant amount of disc i pline upon

developers . The librarian checks the documentati on supplied with MSC codes
and complains if it feels that the documentation is inadequate. It also

extracts and tabulates a copy of the documentation in order to f a c i l i ta te
li brary searches and the construction of program documents such as this.

Thus, much of the documentation appearing in the subsequent Sections came

directly from the CRAT ER program itself .

H
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2. PROBLEM Q R I E N T E  LA N GUA GE

The conmancs that a user imocses upon CR~~~R a-”e organized in a sim ~~e
tree $tr ,Ac ture as illus trated in Figure 1.

C l i  C 12 C1 3 . .

/ I I~~\C 21 C22 C23 C24 C25 . . .
71

C33 C3~ C 3 E  . . .
Fi gure 1. Com mand Tree :llu stra tion

At level 1 , CRATER will list the command options CII , C 2 , . . . from which

the user shoul d select one , C13 say . CRATER then lists the level 2 command

op t ions under the level 1 command selected , e.g., C24 and C25 , from wh i ch the
user should  select  one , and so forth . When the user ma kes a selection at the

end of a branch in the tree, the effect is recorded in the state variables
of CRATER. Then CRATER moves back to the next h i gher level and repea ts the
comand options at that level . The user may then select another command and

follow its branch to the end . If the user does not wish to invoke any command

~-options at the current posi tion in the tree , he may enter BACKUP to move to

the next higher level in the comand tree.

After some practice , a user will tire of all the promptin g (listing of

comand options). To avoid it , he may sim ply enter a string of commands on

one or more lines using the line continuation flag S at the end of each line.

A-4
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For example , a user could invoke every command illustrated in Figure 1 by

entering the following

C l i , C2 1 , C22 , C3 1 , (32 , BACK , BAC K , S

C12 , C23 , S

C 13 . C24 , C33 , C34, BACK , C25 , C35 , STOP

with only a single level I prompting of Cii , C 12 , and C13 . Note that a

command may be repea ted at various time s as long as the position in the tree ,

at t re time the command is issued , is appropriate.

Tnere are three “universal ” commands that may be invoked at any point

in the tree, viz : BACKUP , STOP and HELP . We have discussed the BACKUP
(~r BAC~ for short) command above. The STOP command simply terminates a run

anc HELP will provi oe helpful instructions relating to the operation of CRATER .

We define two classes of comand , viz: trans itiona l and terminal.

Trans itio n al commands have “offs pr i ng ” commands at the next level of the tree

struCt~ire where-as terminal commands do not. Thus , the term inal commands
resi de at the ends of branches o~ the tree struc ture . A te rm i n a l  comman d

may require numerical data to follow it but a transitional command can only

be followed by other commands in the command stream.

The actual words used as commands are simp l y established in a data list

and can be readily chan ced to suit a users taste. See arrays COMMNE and

CMNDPT in block data deck LOP91 of the code for CRATER. The ~th word ,

CMNDPT(i), in the pointer list points to the ~th comman d wor d in  l i s t
COMMND .

The command tree structure is also specifie d by data (see array TREE) in

LOP 91 . However , the organization of TREE is closely related to the organiza-

tion of the code itself and , consequently, more care must be exercise d in

mod i fying TREE. Users who are quite familiar with the code can , in a
straight forward fashion , readily add or delete branches on the tree. A
triple (0, S, w) is associated with each node of the tree where
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O is the “oldest offspring ” node at the next level

~the next younger “ sibling ” node at the same l evel i f pos i t i ve or
S 15 

I the parent node at the previous level if negative

W is the index of the command word associated with the node.

Up to this point , we have described the syntax of a general POL orcarized

‘ 
in a tree structure. The semantics of the specific POL implemented ir C P A TE P

rema in to be discussed . Before doing this , however , it is helpful to discuss

the orga nizati on of CRATER in order to establish the settinc in whi:~ the

POL is couched .
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3. PROGRAM ORGANIZATION

CRATER has a relativel y small executive program that oversees :ne
optimization process. It is supported by 20 subroutines that arry Out

specific tasks. These , in turn , uti l ize 4 utility subroutines ~ro~ the
Basic L i n e a r  Algebra Library [10] and 10 other utilities all cf wr ic~- a’-e
provided with CRATER . The program organiz ation is illustrate : ir Tab le

Table 1 . Program Organ iza t ion .
Calling routines appear directly above
and to the left of the list of called
routines.

— ExE:~~ I~’E ;~ ::sss:~L D C S  — U SE~ I~. E ~~~~ 0’
LO~~t C  —

— u so -  ::.~~~.:
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U SR FN L — U S E R  5U~~~P L I E D  F u \ cT ICN~~ EV ~ L U A T ID \

L0P22 — GRADI [~~ E V A L U A T I O N
U SPORD — US ER S~~~~~:ED GP~~~ I E’ . EV ~~~~~~~1O’~

L0P23 — TS ~~~~ ~
-
~ 5 5 S ; .. ’ . C C.j .~~.T C\ ~~~~

U S R,~~ES — U SER  SU~~~P~~~ IE H E S S 1~~~~N E 4 ~~ LLj ~ IO N :~~~~~::- .~~~~ j

LOP2~ 
— ~‘. 5 S S I A N  u~ 0AT E ~:.‘~I\5 ~~~~. 2)

LO P I2 — INI~~I~~ L I 2 E  ~HE ‘ - ES 5 I ~~\
LC~ 25 — 5 T 5 P  Di~~5: ::, c E~~~ E~~~~~~:~~~~~~T i : .

L0 P 27 — S T E~~ L E N , DE 5 ; . NL T

L OP3O  — CONVERGENCE EVA u~~~ ION ~~ NA3ER
L D P4O  — R ES U L T S  D I S P L A Y  MA N A G ER
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3.1 Purposes Served by CRATER Routines

In th is section we provide a brief statement of pur pose for each
routine in CRATER an d the ut i l i t y routines supportin g it. Th is sect on is
intended for quick reference only. More documentation detail is provided

in Sect i ons 3 . 2  and 3.3.

d P URPCSE C R A T E R
L A B O R A T O R Y  PROCESSOR FOR S TUDY ING LO CA L OP T VI ZAT IO N

PURPOSE GTF
G~~ 5~ L M I N I M I Z A T I O N  TEST FUNCTIO N E V A L ~~~Ti O .

PUR RISE . . . . .

A E G R E E  ~N— 1 P _ ,N VI~~._ ‘~;T~ C J E ~~~S. c x .

PUR POSE LOPO5
A C C E P ~ AND I N T E R P R E T  COMMANDS FOP LOCAL O P T I M I Z A T I O N

PURP O SE LO PO 6
G E T  ONE USER INPu T V~~R I A B ~~E OR c :MMA ~..O

PURP :SE . . . .  .~~O P 1 D
C A R R Y  O UT I N i T I A L I Z A T I O N  O P E R A T I O N S  F R  PR OGR A M C R A T E R

PURPOS E L O P 1 I
1~~I ’ ! A L I Z E  THE P O S IT I O N  V E C T O R  FOP S E L E C T E D  A N A L Y S S

PURPOSE . . . . L DP I 2

I . ; T I A ~~I Z E  T HE H E S S I A N  ( J A C O B I A N . MATR IX

P U R P O S E  L0220
C A R R Y  OUT ONE D P T I M ~~Z A T I D N  I T E R A T I O N  S T E P

P~~~PC 5~~. . • . .LOP21
E , A L J A T E  THE S E L E C T E D  R E A L — V A L U E D  F U N C T I O N A L

PURPOSE LO F22
E. A L U A T E  THE SELEC TE G RA DI ENT FU NCT ION

PUR~~OS E L0P23
E . A L U A T E  THE HESSIAN OF THE SELEC TED FU NCT ION AL

PURPOSE ..O’24
u~ ;A TE THE CURRENT A P P R O X I M A T E  HESSIAN M A T R X (RAN K 2)

PURPOS E. .... LO~ 26
D E TE P ” :N E  A STE P  D I R E C T I O N  S IN THE U— ~~ P L A E

P U R P O SE  LOP27

M O V E  PO S I T I O N  X A R E A S O N A B L E  D I S TA N C E  A L O NG  S

PURP ’~~SE LO~~30
CHECK THE CONVERGENCE AND S A V E  IN T E R M E D I A TE  R E S UL T S

P U R P O S E  L OP4 O
M A N A G E  A L L  RESULT D i S P L A Y  O P E R A T I O N S  FOR C R A T E R

PURPO SE LD PBI
M A T R I X — V E c T O R  M U L T I P L Y , u = N.y ( H  IS NO R M A L L y  A HE S S I A N)

P U R P OS E  LOP91

PROVID E TEXT DATA FOR INT E RACTIVE CO,~~.~N ICAT ION

A-B

_ _ _ _ _ _ _  -~~~~
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F,

PURPO SE . LOP 92
PROVIDE D E F A U L T  VA LUES FQ P CON TROL V A R I A B L E S  OF CRATER

PURPOSE LOPB4
HOLD CO~~.ON D E C L A R A T I O N S  GERMANE TO ML ’.-MA C’~’INE IN T E R A C T I C N

PURP OSE 
H OED CO ,~’,~~N D E C L A R A T I O N S  G E RMANE TO O E R A T I C N  O~ CR.~TER .

a
PURPOSE LOP9B

-3  O I S P L A Y  THE C O N T R O L  AND CO~~M u N I C A T I O N  D A T A  ( P A R A M E T E R S )

PURPOSE L OP99
F GEN E R A L  PURP O SE ERR R HAN DLI NG R OU T INE

PUR POSE SR~~N .

CA ~~C U L A T E  A S P E C I A L  F U N C T I O N A L  FOR USE BY C~ ATE R

~ .1 44-9 
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3.2 Abstracts of CRATER Routines
In this section we provide brief discussions on how each routine in

CRATER serves its purpose. Information on exactly how to use each routine
is provided in Section 3.3.
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3.3 Directions for Using CRATER Routines
In this section we spec i fy the parameters and other consideration s

involved in usin g each routine in CRATER and the utility routines supporting
1,-s it.
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I’. CROS S TO U LOCA. 1.’I’, I ,~:Z47I2\ ON A ..SEA SUAR LI ED F .UI:’.:_ .
THE .555 ‘. _ ST SUPUY S.-EUUI’.ES .. T— 5 F C L . c N CA~~LIU 553.5.515

c A U S R N ..~ N . F .X .,~) — F .,’.D T:O\:(_ E , A ~~~~AT I:- ,

C A LL USRGRD (N , 3 .X , W — G R A O EN E . ,A .JA~~~ON
C A L L  U S R H E S ( N , H , X , W )  — H E S S I A N  E A . ~ - A :D- -. ~2: I D- -.A _ )

~.‘-ER5 F I S  THE SCA :AR FUNCTIO ~ A L VAL UE A 7 . P D S I T I O N  X
0 IS T~~E ‘.1070: O U D I E’ . AT ;CUT U’ , L5N3 ’-

I S  ~HE ‘. C -  N —.5U:’. ‘~4 — R : ~ —
— P C IITIO.

N IS T 5  ‘.0. ir.5UEN DE’,7 ,A R I A I . E 5  I’. T— E  F ..,C 10’.2._

X IS THE CuP E.
~ P : S T O \ •EU’ U ‘: ‘,:-E:E’ , D E N ’  .A R I A S ..E

K IS THE WORII S :ACE (SCRA TC ’- .5CTU ( L E ’ .DT ~~ N)

7 H 5  O C T A l  LS OF THE ~R U A ,!,’ F;U A RE A _ ’.’DST I’A~~~R~~;~ C ON T D~~~E D  U
.A _ . 5 5  A S S I D ’.ED i: PAS.’S’UEFS ‘. 5 4 5 5 _ L E D  c o - - : .  SEE ;5S’ ;~~:~~~.

SE CHAI,OED U SUCI F 1’ .D ~~S 7.;E, I’C I ’ A ’.: ,~~_ _ E ,  EU -
I N T E 3 E ~~,2.3 ‘C SE T T H E SE~~O .D iN~~E3E S TO 7— I ‘..-~~~ C a. o — :s 7175 U

~. D = .. IS OD. .E AT THE PAR A ’ . E T E R  ‘.3.5 CF TH E 0 2 . 1 4 . 5  ‘RIE. .

C D .’CN ~‘A R IA B 5 E S  A U  A R R A Y S  A R E  E S T A B L I S H E D  1’. EX U~~’,A L :5:010—
.RES CD’,’DECV ,S OP I NCLUE DEC~~5) LOP:4 A’ .5795, AND I N EU- 550050—
u’~~E ‘. T1.37 . THESE PRUED ..RES ~~uS1 BE MADE UA I L A E _ E  FO R 7 5  CU;—
ILAT ION OF THE REST OF THE CRATER ROUTINES .

T H O  A? ,’O J N T  OF PRINTO..T IS CON T RO_ L E D U A SPINT LE IEL ES ASLI E .—-E D
BY ~.1EANS CF A PRINT CU~’A ND. EACH LEVE; ‘C ‘TO 14~ INCLUDES THE :.5 ~~U
OF LC..ER LUELS. A RO..U DESCRIPTIC ’ . O F T ’-E O.5UT IN’RIDJCED A
EAC -’ L E V E L  IS G I V E N  BEU C~.. T~~E N J S E E R 5  IN PA RENTHESES I N D I C A T E
F R D V  ~H IC H  R O U T I NE  THE OU T P U T  COWES.

C. 5- ”S’ .l. R ’  DAT A (AC ) AND F A T A ,  E~~’,:RD (-59
1 .  FI NA L  POSITION (50.5710.) (40), NOTE \D .OESDE ’.T 57575 (27)
2.  CONVERGENCE HISTOR~ (40), N ON CON vE RCED STEP V U L T I P L I E R S  ( 2 7 )
3. UTE CCC LR REN C E O~ CUPLEX ROOTS IN QUADRATIC LIN E SEARCH (27)
4. DIS PLAY INIT IA .. POSI T ION VECTO R ( 1 1 )
5.
6. FUNCTi O NAL VAL U E  AS CALCULATED (21) , DEGENERATE PLA N ES (26)
7. CRAD IEN T (22) AN D POSITION (20) VEC TO RS AS CA L C U L A T E D
8. STEP VEC TOR AS CA L C U L A T E D  (26), ER ROR A C r ION CONTROLS (98)
9. HE S S I A N  AS C A L C U L A T E D  (23). CO l,”.’AND O ’ - ~’ (9 (

10. L 1.E S E A RCH D E T A I L  (27), C 0 ’ . AE R SA T I O \ A L  2414 (~~G )

U S A G E  LOPO5
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CA LL LCPC-5~ IND EX)
ARG . TYPE PURSOSE

H INDEX tNT . I NDEX OF THE Cu RRENT CUS’A’.O AU’,D T DSO A RP R DP7 lAT E
FOR THE C u R R I ’ T  CSIT.5N :‘. —E CO~. ’~ ‘C R E E ,  (U- 7 _ 7

0 IF ..DER RISU SE IS
IN~ ..T U.DU=~ i FOUlS 2. ’ .  A.5: - :C SA D . ...

a 7~~5 U’.AN DS :; :C;RIA E 7—I D~~~:E . ~:S: :’ I .
TREE ARE DIS LAY E D AND T i E  .55: F _ .5.~~ ,D U IC’ .S

a 1 . TYPE ONE OF THE -D 0- ’~~.ND5.
2. TYPE T—E KORO hE~~ 

F~~ A G . : DA N C E .
3, T y p e  THE WUD EAOH _

~ TO 3U 7~ ~~~ E 
~E .  UJE .55. ’, 1- . ~~E E .

4 .  T y P ~ T~~E W O R D  5 :; TO T E R’ ,’ I ,A T E  THE s.-.::_ — ::-..

uSU: ..370E
CU~.— , ;E P .., .~:5E

I VAS I’~T . U I’,UT IS A s — A  O I’. UU . : — :s
RV AR REAL IF IN UT IS R E A u ,  IT IS RE T ..R,E D HEU
T’~~E INT . — 1 ,A LPHA C , IN T - 1 , PEA _ ~~UTU ’)

USA.5 LOPIO
A _ L L 0 O  ~\O :.5, E’.T S,

RE ACTS TC I N I T IA  0 4 I \  02 ,1’.’: .55 A u S E S

‘USA GE LO P II
LC I  1~~N A (

~~ 3. T ”~~E 5 _ R U S E
N IN! . ND. U :‘. D : ; E N O E ’ .T . - I _ ES USOD .’ 51.5
x S EU  Pcs : ::- , . 5 .5:5  U SE 1 

~OPl2CA _ S .5 12 . N . — .X , ’~ )
4 1 7 3 .  T Y S E  P.5~~D5E

7’ N7 . DI~- E .5.D’. D F — E  — ZS5~~- .
H R E A L  H:S5I~~ , ‘ :~~~IY . , 5’
X E A L  FO S~

_
~ D. .10::: ‘.DUE’.DZ’ :1:_ I-

~ R E A L  i.5S , _ ACS .UU U •0~ — 

~O 2
CA L L LOP2O (N , X ,G, H ,W)

ARG . TYPE PURPOSE
N INT . PROS_U SIZE (ND. INDEUNDE T V A R I A B . . E S
X REA L CURRENT POSITION VECT OR ( ..1NG’H N)
O REA L CURR EN C.5CIE .~ ~ECTCR (_ 5 ’~~~.-
H R E A L  C URS E’.! ES SIAI. S A T R I X  5’
W REA L WO~~~ SPACE ‘.IATS IX (N 5. 4)

LISACE LCA 2 1
CA _ LCi 21(N , FN ,X ,~~)

A RO . TYPE P ’J RA O SE
N INO . ‘.5. C F IUE~~E’.DE’.! VARIL O_ ES ,D ’E\UU :~
FN R EA . RES ._ L r I N O  ,_ \ . 5’ :\

X REAL I N O E~~ENOENT V A R I A S _ E  .-EO T R )CI’-’E’.SIC’. N
W REAL WOR K SPACE (DIMENSION N)
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USAGE . L0P22

C A L L  L0P22 (N .G. X , W )
AR C. . TYPE PU R A O 5 E

N INT . LEN-OTH U 3, X A ’ .D ,-, ;: .5,~~~
’, .5:5 .5 UN)

O R E A L  P 5 S U _ !I~~3 37’s A . D I E ’ . V E C T ~~~
X R E A L  I N D E A E N D E ’.7 V A 5 : A 5 U  .E .5OR
W RE A L  W3P~ SPACE ( LEN G T H N )

.JSA3E LO~~23
CA L L _ Q P 23 ( N , H , X . ~’. 1

~R 3 . TYP E PU 5 ’DSE
‘I N IN~~. N:. C~ :‘ URI’~:D’ - — v.5 - 4 : _ A :

H P14 ; N 5 -  ‘. H U S I— ’. ‘ . 5~~~~.k

• X R E A L  IND’UE’ .U -
_ . 4 5 1 : 5 _ S

REAL UR~ S~~~:E U . 5 UT~~ N

u SA -GE .5724
CA _ L _C~~24( 

N . H . S. 0 . .-.
AR C .. T~~:E Pu~~~C S E
N IN . R . 5 5_ E ’,’ SU E  .5. IN :-EU’ . D E
H R E A _ ‘. 5 ’  N , _ _ . — 7 . 5 14 .5.5..
S REU S E A  .EO U _ E ’.07 .— ‘. -

C. REAL .5555’ .! UAD IE.’,! .5:::: (U ~2 4TE U ;_ :,C.5 5- Cl— ’.
W REA L P RE.IUS 3U D I EN T  V E CU R  AU ,.D~~ 5 4 0 E i 5 5  - 0

uSUE LOP26
C2.~~L

ARC.. TYPE P .15.551
N 1 N .  2;~~5,,5•: S l O E
S R C A -. 5 E L E D 1~’~~~~ :DUU ~~: :5 s :~ ‘.EY~ 2. :;; :,

U RE A ~ CC’,’ 0NE N~~~~F P _ 4- ,E C’,~~,— I- C— D SE— ~~C— FD S
V R E A L  C D- .’ ;:NE’’ ~.5’,s C’. I’. i~~ U.~U— S
H R E A  N B~ N ~~ S5 A 7 , ‘. A T R I X  (D . 5 R E . _ ’ U _ .

.5405
CALL LO P27( N , X ,S ,G ,w )

AR O. TYPE PURPOSE
N IN T . PR O B L E Y  D I M E N S IO N
x P E A L  C U R R E N T  P O S I T I O N  (IN D E ~~EN D E N T  ~- A R I A B L E )  ( L E N GT H  N )

5 REAL STEP D IRECT ION FOR NEI~ POSI TION (LE N O Tri N )
C R E A L  G R A D I E N T  V E C T O R
w R E A L  W O R K  S P A C E ( L E N G T H  N •2)

THE TECH N I Q U E  FOR THE L I N E  SEAR C H IS C O N T R O L L E D  BY THE INTEGER
P A R A M E T E R  L SCA SE AS ~OLLO ,’iS~

I I — CUBIC (My FORM ULA)
I 2 — CUBIC (My FORM ULA) WI TH 1ST POINT EXTRAP OL AT ION

LSC A SE • < 3 — QU A D R A T I C
I 4 — CUBIC (DAVIDON FO RMU LA) WITH 1ST POINT EX TRAP OLATION
I 5 — CUB IC (DAV IDO N FORMU LA)

THIS ROUTINE USED PA RAMET E RS ALPHA , T O LF AC -AND RLPRM 5 ALSO
(SEE THE AB STRACT).

uS A GE 50530-
C A L L  LC P 3O (C C N V )

ARC TYPE PURPOSE
CONI 5CC SET ‘5.5 1 5 AU ONL Y Z F 7H5 ~5DCE5S ~4$ C ’ .V E R C E D

AS R E Q U I R E D

USAGE LOP4O
CA L L LOP4O (NO ARGU M ENT S )

R IS PONDS TO D I S P L A Y  CO ’:~.
’ NO S ISS UE D B~ !.E .55;

uSA GE LU6I
CALL LO P BI (N ,U , H ,V )

AR O . TYPE PUPPCSE
N tNT . D V E N SU \  U

-~~~~ 1 A-16
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U R E A L  V E C T O R  RE .5LT , U
H 5 - CA L  N By N 5’.55)X (HESS IA N) FOR , J L T U _ 1 C !UN

V P545 ?.~L _ TU ;iC - ~- ’U .50705

U S A O E  .5755

a ‘ —s .U:DES ~~~ 01.5:71 :5 :os :5.5~~:’,’ CR~~~ER 
“.37 l’.O L u D E

7~~C - U S I 7.S 505 T — I E  a _ U-. 0.52. .

IN A U N IV U  MAP , L.SE 5051 1

f

IN ._ O ;1)1 

LD 92

~•-s _ c .’:E~ (~...5,- 0:51.5 1.55 FU :5::: ’: CR . 5E  1:_ U

~.5-,:S1.5S FOR T~~I S  S _ DC’ . 0.54 .

IN A JNI ~~AC ?.‘A , .51
IN LOU2

U3A CE LD P B
.5_ L LU93 U

R3L 7I ’,E IS 1.’A I N _ V  uSEO :DR DEE.3CINCl. 

;0 29
C A L ;  -2P99 .’.5

4 5 0.  !~~PE u~~~C5E
‘.5 INT - I ’ . 5EA  _ :  s:. 1’ 5 1 ?.~~ .5— :‘ . 5 A 7  0 _ ~~.U

_ _  j
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4. COMMAND INTERPRETATION

In this section we discuss the spec i f i c  commands implemented in the POL
(problem oriented language) of CRATER. This discus sion draws heavily on the
material presented in Section 2 and is probably unintelligibl e for the
reader who has not first read tha t Section . A genera l far-iliarity W ith

Section 3 will be helpful for the reading o~
’ this section but is nc- t quite

as crucial.

Both the tree structure and the ...)mmand words used in CRATER are pro-
vided in Table 2. As mentioned in the introduction , only the first four
letters of each command are required from the user. For each command word
C . the ‘offspring ’ command words (command word options at the next level
of the tree that are associated with C) appear indented and directly

under it. Table 1 is constructed by CRATER in response to the commands

DISPLAY , COMMANDS (or DI SP , COMM ) issued at tree level  1. Note that

several command words such as PRINT , READ , DISPLAY , etc . are repeated .

They appear only once in  the command word list COMMND but are associated

with several nodes of the tree.
CRATER indicates the current level in the tree whenever it lists the

command options for the user. For example ,
2 ~LE~~ E TVF’E ONE OF THE FOLLOISIIN~ CDMM~ND~P~ 1NT ‘o:I TIIN

EVA LUAT E ‘IETHOD E~~~C’H

is a list of level 2 options associated with INITIALIZE. If a user has

lost track of wha t options he has selected up to a certain point , he can

back up to level 1 (using one less BACKUP command than the current level

:number) to get to level 1 , and issue comm ands DISPLAY OPTIONS . A typ ical
response is as follows :

~ I
A-18
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TABLE 2. Command Table for CRATER

I N I T I A L I Z E
2 . . PRINT
3 . . Fu-~CT ION
4 . . . PO SE NSPO C
5 . . . E;LI~~5U0.
6 . . . S P E C I A L

7 , . , P~~~,E L L

8 . . . ~ 2D0
9 . . P055.10’.

10 . . . RD SE ’,SUC

11 . . . R A N D O M  a
12 . . . ZERO
13 . . . RE A D
14 . . . PO~.ELL
15 . . . WOOD

‘

-

‘ s 16 . . . RAYLEIG H
17 . . HESSIAN
18 . . . I N I T I A L
19 . . . . A N A L Y T I C

20 . . , , U E N T I T Y
21 . . . , R EAD
22 . . . U PDAT E
23 . . . A N A L Y T I C

24 . . . . DFP

25 . . . . BFC. S
26 . . METHOD
27 . . . PL S I

28 . . . DFP
29 . . . B R OS
30 . . SEARC H
31 . . . C U B I C
32 . . . EXC U BIC
33 . . . Q UA D R A T I C

34 . . PARAMETER
35 . . . I N TEGE R
36 . . . PE A L
37 . . . D IS PLAY
38 . . EV ALUATE
39 . I T E R ATE - -
40 . D I S P L A Y
41 . . R E S U L T S
42 . . . P R I N T

43 . . PLOT
44 . . . , T E R M I N A L

45 . . . . SYSTEM
46 . . O P T I O N S
47 . . COW?A NDS
4B . . S T A T E

A-19
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CURRENT OPTIONS 

1 P O S I T I O N  W D DO
2 FUNCT IO N WOOD
3 I N 1 I I A L  H E S S i A N  ZD ENT I Y
4 U PD .5E H E S S I A N DS P
5 PRIN T 9
6 METH O D O F P
7 SEARCH E X C U B I C

~ As disc ussed in Section 2, two classes of comma nd are used , viz :

transitiona l and terminal. The terminal commands reside at the ends of the

branches and certain of them require input data immediately following ther-.

N o t e  that any command in Table 2 that does not have another command directly
beneath and to the right (indented ) of it is a terminal command. Thus , for
exa-’-~le , PR IN T , ANALYTIC , and ITERATE are terminal commands. Prompting is

provided for termina l commands requiring input data , such as READ .

4.1 Command Semant ics

The interpretation of most of the commands is sel f evident. Here we

shall run through the commands in Table 1 , pointing out special considerations
as we go.

4.1.1 Initialization
The f irst command to be entered is usually INITIALIZE , however , a user

migh t  enter
DISPLA Y OPTIO NS BAC K IN ITIALIZE

in order to find out what the default options of CRATER are before
initializing. Except for EVALUATE , which should be the las~ comand used

during initialization, the order in which the initialization commands are
imposed is flexible. EVALUATE establishes the func tion , gradient and Hessian

values at the initial position and thus requires that they be previously

defined .

There are three standard test functions (ROSEMBROCK , ELLIPSOID and
POWELL) built in and a Pnk SPECIAL to a user defined function. The terminal

comands ELLIPSOID and SPECIAL require the number of unknowns in the problem

A-20
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to be entered as data (free-field integer). Since it only makes sense to

selec t one function , CRATER generates a BACKUP command internall y af ter a
selection is made for the convenience of the user. This innovation appli es
also to POSITION , I N I T I A L , UPDATE , METHOD , SEARCH , an d PLOT commands.

The PRINT command sets the amount of opera tional detail to be printed

out during the analysis. It must be followed by a print level (integer)
L i ranging from 0 to 10. The effects of the vari ous print levels are described

in the CRATER USAGE description in Section 3.3. Typi cally, t he pr i nt level
is set high (8 - 10) for the first couple itera-.~ons an d then l owered to

(0 - 5) for the rest.

The POSITION command should follow the FUNCTION command , The three

standard initial positions are built in corresponding to the standard , built

in funct ions. In addition , a random or zero initial position can be generated

internally and the user has the option of entering a special initial position
after the READ command. If the size of the function has not been establis hed

s fore entering POSITION , it does not know how large the initial vector

s iould be . A user can obtain a variety of random initial positions by

repeating the command sequence POSIT ION RANDOM .

The method for constructing the HESSIAN must be established both

in itially and for update purposes during the analysis. The Dav id on -FletC ’~e’--

Powell (DFP) an d Broyden -FletCher-Go ldfarb-Shann o (BFGS) update formulas are

bui lt in , both for updating the Hessian and the ~nverse Hessian. For this

study , an analytical initial Hessian is used with either the DFP or BFGS

update formula. Periodicall y, during the anal ysis, the analytical Hessian
is reconstructed by means of the command sequence

I N I T I A L I Z E , EVALUATE , BACK
and then th~ iteration is continued . It is possible to have trat comrlanc

sequence generated internally by the iteration portion of the program (on
the basis of a suitable decision heuristic) but this has not been done .

Most of the operational “state ” variables are maintained in a parameter
list descri bed in the CRATER documentation of Section 3.2. The PARAMETER

command gives the user access to these parameters both to see what values they
have (DiSPLAY) and to change them (iNTEGER and REAL). For example , to se t

A-21
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the 4th f l o a t i n g  poin t  parameter to 5000 , one may enter
REAL 4,5.E3

or some FORTRAN equivalent representation of 5000. It is essential to under-
stand the purposes of the parameters (see Sec . 3.2 under CRATER) before doir :
any modifications.

The methods c u r r e n t l y  im plemented are the planar search with one

f dimensional line search (PLSI) descent method and versions of the famous

Da vidon— Fletcher-Powel l (DFP) and Boyden- Fletcher -Goldfarb-Shanno (BFGS ,~
quasi-Newton methods. In the current implem entation , the Hess i ar . up d a tes a re
ap ol ied directly to the approximate Hessian s rather thar being held ir DrDduct

form . Consequently, it is not appropriate to use an analytical initial

Hessian with either the DFP or the BFGS algorithms since the requisite matrix

inversion algorithm is not provided .
A choice of the Davidon cu bic interpolation line search (CUBIC ~ with out

extrapolation or with it (EXCUBIC), or a quadra tic line search (QUA RA IC )

is provided. If EXCUBIC is sel ected , then the exp ec ted v a l u e  of the co ~-e~-:ed

function must be supplied as data .

4.1.2 Iteration

The iteration process is trivial to invoke in comparison with initial i -

zation . The user simply enters ITERATE followed by the maximu m number c-f

iteration steps to be taken. As mentioned earlier , it is convenien t to

in itially set the print level high and iterate only 2 or 3 times in order to

see that the process is goin g properly. The user can then return to

initialize and l ower the print level if everything is ok , or el se change
the initial conditions in order to improve things.
4.1.3 Display

Besides intermediate results that can be obta ined during the iteration
process by setting the appropri ate print level , CRATER provides a variety of
summ ary results via the DISPLAY comand. Values  for the func t ion , the
gradient norm , the step norm and inner product of each new gradient with the
previous step (0 for perfect iteration) are tabulated dur ing iteration and can

be printed or plotted (on Univac computers) in the d isplay mode. The plotti nQ

system is machine dependent and would undoubtedly have to be modified for
di fferent computing environments. Terminal plotting , of course , is  onl y
applicable if the user has a graphics terminal .
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In addition to com putational results , select options chosen during
initialization and the complete command table (see Table 1) can also be
genera ted . Should something go wrong with the computation , the program
state variables may also be displayed for debugging purposes. This output
tends to be rather long and is seldom needed.

a
‘p

4.2 Batch Processing
The problem oriented language 0f CRATER provides a convenient means

for setting up batch jobs as well as interactive ones. The following is
typical of such a job in a fairly readable form .

HE L P  $ ~ E F I R S T  IL L U S T R A T E  T HE  H E L P  INSTR .C ION.
INI TIAL IZE S THIS I S A  T Y P I C A L  P R O E L E M  D E F I N I T CN IN T H E

PR INT 10 $ cRA 1 EA POL (PROO LEM O~~~ENTED LA N G U A G E ) ,  T H E
FUN CTIO N RDSENBROCK S PRINT LEVEL I S  S E T  HIGH TO O B T A I N  A L L  O~, T —
POSI T I O N  RD SEN B ROCK S PUT DU R ING I N I T I A L I Z A T I O N .  THE STAN D~~R:
H E S S I A N  5 P SE ’,E~~~O~ 5uN . IS TO BE S:..~~E D  U S I N G  I S

I N I T I A L  A N A L Y T I C  S STA ’.:ARD I N I T I A L  ~0S5. ION VEc TOR . HE I . I T
U~~D A T E  A N A L Y T I C  S IA . A ’ . - u~ DAT E HEss:AN ~ A 5 5  T O BE A’ .L ,y 5 . ,

S CE ’,’ .ST &A ~~~N 3 THE B A S I c  A .G R I ’ ’’,’ IS~~~S S E D
METHOD PL S 1 S IN T E N T , TH E P L A N A R  SE AR c” 1 (P L S I  ) A~~D L i T H M
P A R A M E T E R  S IS T EE USED. R E A L  P A R A M E T E P  4 ( T O ~~ FA ~~ 15

P E A L  4,5000. 5 SET TO 50-:: - IN O R DER T O  ~~ E E A L L
SAC~ 5 101’ ’ C~~~S T R A I T5, 

~E 5 H A ~~~ USE T H E  C~~E I C
S EA ; O - i  CuBIC $ S EA ; : H  IN H E I S  S E T T I N G .
EVA ~._ A T E S
PA R L’ , E T ER S A~~T~~R TH E I N I  iA ~ FUN C 1ON . G R A D I E ’ . ’

D SPLA Y S AN: ~ E SS IA’ . E .A .~~A T 1 O N . WE DISP~~A Y THE ~~. R—
BAC K $ A ’ .’ E7 E~~S FOR D B ~~E CH EC~~IN3 L A T E R .  N O T E

BAC K 5 T~~~T WE A - ~~A Y S  E NT E R  B A C K  TO R E T U R N  TO T HE
DIS P L A Y  S P R E - ,- IC j S TREE LE VEL I I N D E N T A T I O N  LEVEL) , WE

O PTIONS 5 ChOOS E TO OB TA I N A S-,7-”’A R~ Dr ‘ HE OPT 1~~~S
BA C K  S SELEC TE D ON THE DUTPJT FOR HAN DY RE FERE N CE.

I T E R A T E  1 S NE X T nE C A R R Y  O~ T ONE I T E R A T I O N  W I T H  LOT S
i N I T I A L I Z E  S OF PR NT OU T AND THEN GO BAcK TO IN I T I A L I Z E

PRINT 5 S IN ORDE R TQ REDUCE THE PR IN~ LEVEL .
BACK 5

I T E R A T E  200 5 NOW ~ E ~~~~~ THE PR OB L E~,’ A L L O~.ING ND ~‘DR E
DISPLAY S THA N 200 STEPS, AND D S PL A Y  THE PESU~ TS ON

RES U L T S  5 THE PRINT ER (AS OPPOSED TO PLO TT ING THE? -

PR INT $ N OT E  T H A T  THE LINE END F L A D  S IS NOT R E—
STOP Q~ 1RE D A F T E R  THE STOP c~~,WAND.

-The same job in more compact (and less readable) form appears as follows :

HELP INI T PRI N 10 FUNC ROSE POS I ROSE HESS INIT ANA L U P A  A NAL BAC K S
MET H PLS I PAPA RE A L  4,5000. BAC K SEAR CUB I E V A L  PAP A DI SP BA CK BAC K $
DISP OPT! BACK h E R  1 IN IT PRIN 5 BAC K h E R  200 DIS P RES u PRIN S
STOP
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It is obviously necessary to have Table 1 handy along with a familiarity of
Sec . 4.1 in order to set up such a job. However , once such a set up is
made for a particular problem , it proves very convenient for executing a
number of stud i es .

By leaving off the stop and insurin g that the last line does not end jr

• $, a packaged command sequence s i m i l a r  to the above setup is also very hel pful
for interactive studies. Simply introduce the command sequence initially
and have control returned to an interactive terminal afterwards for further

processing.

4.3 Examples
In this section , we provide sample results obtained from two run

streams . The first is taken directly from an interactive session at a
termi nal. The cornands issued by the user are underlined for emphasis.

~~~~ Cr ~.HELLO, I i~s M ~ :Or4vEP :~RT ION ’~L ppo ri FOP LOCAL FIJ rj ’ :TIO r4Fi L r’1Ir-1 1rl I~m~T I~~T 1 .
IF YOU f-4 EEtJ HELP’ PLE~~ E TY~E HELP. 0THEPJ,II:E
I PLEA .E T’ 1-’~’F ONE OF THE FOLLOI4 IING cori~i~ rir :

I N I T I A L I Z E  I TE F’AT E
DI IP

2 PLE~~ E TYPE ONE OF THE FOLLOWING CDrIMANI’:
R’E~ ULT~ OPTION COMMAND: :TA TE

OPT ION: .

CIJPPEr-IT OPTION

I Po~~ITIDr4 RAN DOM
2 FIJNC:TIOF-I C PECIA L

= 3 I N I T I A L HE~~ IAN At-4AL 1’T IC
4 UPDATE HESSIAN BFG
5 PPI~MT

5
6 METHOD PL~ 1
7 rE~ RCH ~IJADRA T IC
7 PLFA~E TYPE ONE OF THE ~DLLOI,IIN”~ cor lMAr1 1’

PE UL T OP T I D~4~ :o ri~~ riL: :-TATE
BACV. I r i l T
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‘ PLEA E TYPE ONE OF THE FOLLOW ING coM~ Arir :

PPINT FUNCTION POS ITION HE~~Z IAN
METHOD .EA~ CH F’A~~ METEF EVA LUATE

3 PLEA:-E TYPE ONE OF THE FOLLDIsIIN COMMANDS
RO3ENF’~ DC ELLI F~3DIP  ‘PECIA L PO~.IELL
‘~‘nor~ -3~EC

PLEA:E TYPE THE ~J2E nMENT- Ior~ O~ YDL’~ FIJNçTJONAL .
4
2 PLEA E T’’PE ONE OF THE ~OL LO’ t IN~ :OMMA NtI~

~FINT FUNCTIO N FO IT ION HE~~ IA N
!IETHOt :E~~ CH m~ D~ METE F-

3 ~‘LEA E TY PE ONE OF THE ~OL~ DW ING i::’iM~Nr’ :
- 

-
~~ PO~ENBPDC ~‘ANDOM EPO PEAr’

PflIJFLL ‘.OOD
F’iRYLINGTON

INITIA L Po:~I TT DN  — PAYLEII5H
I. OO fl~10+Ofl 4 .~~I405— Ol 4 . r 1 4 0 5 — o I  4. 1 1 4 0 5 — O 1

2 PLEA ’E TYPE ONE OF THE FOLLOI,IING :aMM~~ D:
F’~ INT ~tjN’TION ~‘o :ITior’~rIETHE1r’ :EA;’C-H F’A~ AMETE~

EVA _ E~RC~FOPt’1 O~ INITIAL HE TAM —

A I ~‘LEA:- E TY~ E ONE O~ THE FOL LOW ING CoM~1A~t:
INITIA LI E ITEPATE DI~ PLA~-’

ITE 31’

•.. LO~~ 4 — AN I IPrIATE CO E~~~ICIENT I: :EPO. ~ .F = 0. f l f l f l  I~~.

PE—I N JTIA LI E THE HE::IAN .
~‘D~M OF INITIAL . HE::IAN - ANALYTICAL

= 3.729I 7~4 — t ~2 AT —4 .?€~’l 1 I 2—O I - NOT CONVEP~ EP
= —2. O~~1T46~ —O4 AT 5 . 2 4 7 S 6 ’3 — ( ~1 — NOT CONVEP~ ED

I PLEA~.E TYPE ONE O~ THE FOLLOL~IIN G COMMAND:
INIT IALI E ITERATE DISPLA’~-’

DI~~ PE~”JLTZ
3 ~~~~~~ TYPE ONE O~ THE FOLLD(,I]N’~ ‘:OMMAND:PR I NT P LOT

F’FINT

- 
FINAL PE~ ULT

FUNCTIONA L VAL UE 1 . O O O O O O ~ +~~O
C~F ’AtI IEN T NO R M

TE~ NDP M 2 . 3 0 2 0 6 4 3 — U T
A :E PTANC E C R I T E R I O N  3.200oo r ’n+oj
“TE F LENGTH FACTO R
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N~~~. ~Ijr~-:TIoNAL E\.’AL: 14
rio, G~ A t ] E NT  EVA L . 34
NO. H E : : I A N  EVAL3 . 2
NJ . HE: :IRN UPPA TE~ 12
‘19. HE: - - E C T O P  MULT! 29
NJ. ITE PAT IOM!~ 13

4 NO. LiEGEN . PLRNE~’ 0

Z’OLUTIDN ~PO~ ITIDN OF MINIMUM ”

9.~~35~.T~ I— 01 —3.~ .442101—0~ 2.e~754551—O3 —I.200E~~0I—0~- a 
CON’,’EF’GENC’-E HI-:TOPV

ITE~ ~ JN
’TION AL G~”RD1ENT C1O ’T HET ,G .: ”

H 1 — 
i i , ~~ ~I+ O iI 1 ‘1~~ E ,,~~+n II 1 :o : 2 c4_ c :  i :~~o~~~~~+ n i ’

1 1. E~.4~ I 1+00 2. 2 1974 0+00  0. 00000(1 0. 0 0 0 00 0
• .3 1. -~.C’ 1723+00 2.915311+00 1.397474—02 6. T 4 14 14 — C I 1

3 1 .2 1434 3 +00 1.3033 14+00 3.7133 4 7— 07 4.4 94 947— 0 1
4 1.04 1974 +00 G .1 3 3 3 73—01 — 7. 34 1932— N 3 .24429 4— 0 1
s 1.004507+ 11 0 1.997154—01 —4 .70 4 744 — 03 2 .194259— 01

i.ooo’ : ’n+oo 3 .247124—02 —1.40334 3— 04  4. 4 72 325— 02
7 1. r~:nc ’ .3+ (th  :3. 49 01 5 0—03 7. 225234—05 9.9 350 69—0 3

1. U1’~i ’) 0 , ’, +0C ’ # . 9957 09— 04 9. 67E.’~03—02 1.41 ?5~ 4 — 0 3
~ 1. “i”~’0i’+flU 1.92964 0—04 —2 . 51T -~~ 3— 0 1  I. 169729 —04

10 1. orr ’~ri ri+no ‘3.4-33491—05 4. on4~~o5—o2 5. 2550 3—05
11 1 .rI n 1v,1I ,’I +f l O  4.75345’~— 05 ‘3.729343—04 7 .711701—N
L 1 i ’ !i ’~+lW 1 i i—u ~ —~~ 4u~~~~:~— 0: 1 ~~~~~~~~~
13 1’ . 01~~fl 00+Ofi 1. 629595—07 — 5 . 352420—0! ’ 2. 30204 4— 07

3 ~-LE~~:E TY PE ONE OF THE FOLLDWIN ’~ COMMA ND:
I’~ T PLOT

I--A ” ’ o~-TxoN :

CURRENT DF’TION

I ~‘OTI T7C ’~N RAYLEIGH
.3 ~‘JNCTION 2PECIAL

I N1TIA ~ HE~~2 I A M  ANALYTIC
4 ‘~~~~~E HE3!IAN
~ ~R1NT

‘5
.
~ PIETHOI’ PL$1
“ :‘EA ’CH ‘~UADPATIC

.3 PLEA :E TYPE ONE OF THE FOLLOW ING COMMANP ~
PE ’JLT ’ OPTION Z -DMMANDc 9TAT E

=
~~~~~ TEP MIM AT Er I
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The second example is the result of submitt ing the run stream at the

L beginning of Section 4.2 in a batch processing mode. In this instance , the

user comands were not displayed in the output. Can you tell where they

wou ld have appeared in interactive mode? There is an echo option for batch

mode which includes a display of the commands.
a

it
~ XO T C A ,

4 H E L L O ,  I A~ A C O N L E R S A T I O N A L  ~RO3RA~,’ FOR LOCA L F .CT IONA L M N ~~~IZA T ION.IF You NEED HELP . PLEA SE TYPE HELP. OTHERWI SE
1 PLEASE TYPE ONE OF THE FOLLOWING COMMANDS

IN I TIALIZE ITERATE DISPLAY
OUR C O N V E R S A T I O N  IS O R G A N I Z E D  AS A T R E E  S T R U C T U R E .  AT EACH LEVEL YOU
WILL HAVE DIFFERENT CO’.”.’AND OPTIONS TO DIC TAT E MY SUB SEQUE r ,T A C T I O N S ,
AT EACH LEVEL I SHALL TELL YOU THE CURRENT LEVEL Nu::BER AND THE VALI D
cO~’MANDS. YOU SELECT ONE AND I WIL L CARRY IT OUT. YOU MAY M ISS PE .L THE
COMMANDS AS LONG AS THE FIR ST FOUR CHARACTERS ARE CO RR ECT.

WHEN YOU HAVE COMPLETED WORK AT A BRANCH OF THE TREE. USE THE BLcK-L P
COM~,~AND TO GO BA CK TO THE PREVIOUS (HIGHER - LEVEL BRANCH , F R BRE . IT Y ,
I DO NOT REPEATE DLY PRIN’ BAC KUP AS A CGM .’AN D ORTION. THE SAME BREVI TY
C O N V E N T iO N  A P P L I E S  TO THE H E L P  A N D  STOP cOMr,IANDS.

THE E V A L U A T I O N  PHA SE OF I N I ’ IA L I ZA T I C N  IS A L nA Y S  REOU :PED AT L E A S T  O N C E
BE FORE THE S O L U T I O N  (I T E R A T I O N ) PHASE. IT SHOULD BE DONE A F T E R  MOST OF
THE OTHER I N I T I A L I Z A T I O N  WORK IS DONE.

GOOD LUCK.
i N I T I A L  P O S I T I O N  — RCSENBROCX STANDARD

—1 .20000+00  1 .00000+00
GR A D I E N T
— 2 . 1 5 6 0 0 0 0 + 0 2  — 8 . 7 9 9 9 99 9 .0 1

F • 2.4200000+01
FO RM OF INITIAL HE SSIAN — A N A L Y T I C A L

HESSIA N
I .330000+03
4.800000+02 2.000000+02

THE INTEGER PARAMETERS ARE
1 1 1 1 10 1 1 1 1

2 100 5 0 0 1 1 1 0 0
0 0 0 0 0 0 0 1 3 5
9 11 13 15 17 1262 2507 3752 4997

THE REAL PARAMETERS AR E
3.200000+01 0 .000000  0 .000000  5 .0 0 0 0 0 0 + 0 3  0 . 0 0 0 0 0 0
0.000000 0.000000 1 .280000+02 0.000000 2.420000.01
1.000000+06 1.000000+06 2.328677+02 1.000000.06 1.000000.06
4 . 6 9 3 3 2 1 — 0 1  1.0000 00 + 06  1 .000000+06 1 .562050+00 1 .000000+06
1.000000.06 1 .000000+06  1 .000000+06 1.000000+06 1 .000000+06
1.000000 .06 1.OOC ’ 00 0 +06
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C U R R E N T  OPTION S

I POSITION R O S E NB R D C
2 FuNCT ION ROSEN SPOC
3 INITIA L HESSIAN ANALYT IC
4 UPDATE HESSIAN ANAL Y T Ic
5 PRIN T 10

— 6 METHOD PLS I
7 SEARCH CUBIC

ST EP
2 . 4 7 4 2 0 0 7 — 0 2  3 . 8 0 6 1 2 1 6 — 0 1

F ~ 4.7317856+00
-
~~ GRADIENT

—4.64~ 5992+OO —1 .2383759—01

POSITION

— 1 . 1 7 5 2 5 8 0 + 0 0  1 . 3806122 +00

HESS IAN
1 . 1 0 7 2 3 3 + 0 3
4 .70 10 3 24 02  2 .000000 +02

FINAL RESULTS

FUNCTIONAL  V A L U E  0 .000000 0
GRAD IENT NORM 0.0000000
STEP NOR ,’ 2.46073B9—06
A C C E~~TA ’.CE CRITERI O N 3,2000000+01
STEP LE NG TH F A C T O R  5 .0000000+03
NO . FLIN CT IONA L EVA LS 8
NO. G R A D I E N T  E V A L S .  8
NO. HESSIAN EVA LS. C
NO . HESSI AN U R G A T E S  0
NO. HE 5—VE c T OR M ULTS 14
NO. ITERATIONS 7
ND . DEGEN . PLANES 0

SOLUT I ON (POSITION OF MINIMUM )

1 .0000000+00 1.0000000 .00

CO NV EP G ENc E H ISTORY

IT ER F UNCTIO NAL GRA Z I E N ’ T  C D S ( T H E T ( G . S ) )  S TE P
0 2 .420000 + 01  2 .328677 .02  4 . 6 9 3 3 2 1 — 0 1  1.5620 50 .00
1 4 .73 1786 .00 4 .6432 50 .00  — 9 . 1 4 6 0 1 2 — 0 2  3 .8 1 4 1 5 5 - 0 1
2 1. 40 3741 +03  1 .363379+ 03 8 . 3 2 8 1 7 5 — 0 1  4 .9437 33 +00
3 5 .727937 — 02 4 .7 8 6 4 8 6 — 0 1  — 1 . 0 3 9 7 2 6 — 0 4  3 .7 4 7 0 6 2 4 0 0
4 3. 2 8 1 0 7 1 — 0 1  2 .56 1674 .0 1  1 .175 8 2 1 — 0 1  4 .357 2 3 5 —0 1
5 1.554799 — 07 7 .355650—03 — 4 . 9 0 6 5 0 1 — 0 1  5 .655543 —0 2
6 2 . 6 9 2 2 9 1 — 1 2  5 .475962 —0 5 — 2 . 7 1 19 9 9— 0 2  7 .9970 2 3 —04
7 0 .000000  O . 0 ~ OO00 0 .000000  2 . 4607 39—06

RUN TERMINATED
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